Bilayer Ion Trap Design for 2D Arrays

arxiv(2023)

引用 0|浏览11
暂无评分
摘要
Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap arrays and enhance connectivity in emerging trapped-ion quantum computers. In surface ion traps they have typically been implemented by shaping radio frequency (RF) electrodes in a single plane to minimize the disturbance to the pseudopotential. However, this method introduces issues related to RF lead routing that can increase power dissipation and the likelihood of voltage breakdown. Here, we propose and simulate a novel two-layer junction design incorporating two perpendicularly rotoreflected (rotated, then reflected) linear ion traps. The traps are vertically separated, and create a trapping potential between their respective planes. The orthogonal orientation of the RF electrodes of each trap relative to the other provides perpendicular axes of confinement that can be used to realize transport in two dimensions. While this design introduces manufacturing and operating challenges, as now two separate structures have to be precisely positioned relative to each other in the vertical direction and optical access from the top is obscured, it obviates the need to route RF leads below the top surface of the trap and eliminates the pseudopotential bumps that occur in typical junctions. In this paper the stability of idealized ion transfer in the new configuration is demonstrated, both by solving the Mathieu equation analytically to identify the stable regions and by numerically modeling ion dynamics. Our novel junction layout has the potential to enhance the flexibility of microfabricated ion trap control to enable large-scale trapped-ion quantum computing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要