A SWAP Gate for Spin Qubits in Silicon

arXiv (Cornell University)(2023)

引用 0|浏览95
暂无评分
摘要
With one- and two-qubit gate fidelities approaching the fault-tolerance threshold for spin qubits in silicon, how to scale up the architecture and make large arrays of spin qubits become the more pressing challenges. In a scaled-up structure, qubit-to-qubit connectivity has crucial impact on gate counts of quantum error correction and general quantum algorithms. In our toolbox of quantum gates for spin qubits, SWAP gate is quite versatile: it can help solve the connectivity problem by realizing both short- and long-range spin state transfer, and act as a basic two-qubit gate, which can reduce quantum circuit depth when combined with other two-qubit gates. However, for spin qubits in silicon quantum dots, high fidelity SWAP gates have not been demonstrated due to the requirements of large circuit bandwidth and a highly adjustable ratio between the strength of the exchange coupling J and the Zeeman energy difference Delta E_z. Here we demonstrate a fast SWAP gate with a duration of ~25 ns based on quantum dots in isotopically enriched silicon, with a highly adjustable ratio between J and Delta E_z, for over two orders of magnitude in our device. We are also able to calibrate the single-qubit local phases during the SWAP gate by incorporating single-qubit gates in our circuit. By independently reading out the qubits, we probe the anti-correlations between the two spins, estimate the operation fidelity and analyze the dominant error sources for our SWAP gate. These results pave the way for high fidelity SWAP gates, and processes based on them, such as quantum communication on chip and quantum simulation by engineering the Heisenberg Hamiltonian in silicon.
更多
查看译文
关键词
spin qubits,swap gate,silicon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要