Utilizing Free Clients in Federated Learning for Focused Model Enhancement

CoRR(2023)

引用 0|浏览11
暂无评分
摘要
Federated Learning (FL) is a distributed machine learning approach to learn models on decentralized heterogeneous data, without the need for clients to share their data. Many existing FL approaches assume that all clients have equal importance and construct a global objective based on all clients. We consider a version of FL we call Prioritized FL, where the goal is to learn a weighted mean objective of a subset of clients, designated as priority clients. An important question arises: How do we choose and incentivize well aligned non priority clients to participate in the federation, while discarding misaligned clients? We present FedALIGN (Federated Adaptive Learning with Inclusion of Global Needs) to address this challenge. The algorithm employs a matching strategy that chooses non priority clients based on how similar the models loss is on their data compared to the global data, thereby ensuring the use of non priority client gradients only when it is beneficial for priority clients. This approach ensures mutual benefits as non priority clients are motivated to join when the model performs satisfactorily on their data, and priority clients can utilize their updates and computational resources when their goals align. We present a convergence analysis that quantifies the trade off between client selection and speed of convergence. Our algorithm shows faster convergence and higher test accuracy than baselines for various synthetic and benchmark datasets.
更多
查看译文
关键词
federated learning,free clients,focused model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要