Development of Inclined Applicators for Flattened Beam Intraoperative Radiotherapy

APPLIED SCIENCES-BASEL(2023)

引用 0|浏览2
暂无评分
摘要
A 3D-printed applicator for intraoperative radiation therapy (IORT) using the INTRABEAM system has been introduced, designed to protect normal tissue, expand indications, and assess its effectiveness in various intraoperative settings. The study involved designing and creating inclined applicators at 0 degrees and 45 degrees angles, which were capable of producing flattened and unflattened beams and shielding non-target areas from radiation. The applicator was evaluated based on dose uniformity, percentage depth dose, leakage, and dose rate. The findings showed that the applicator provided a uniform beam at various depths (1.23 to 1.30 for the flattened beam and 1.25 to 1.32 for the unflattened beam) and effectively shielded against leakage, with no leakage dose measured at 1 mm from the surface. Additionally, the dose rates after 3 min of irradiation for flattened and unflattened beams were 51.0 and 52.9 cGy for 0 degrees and 48.5 and 54.8 cGy for 45 degrees applicators, respectively. This suggests that the applicator can efficiently deliver IORT while minimizing exposure to normal tissues, particularly in treating chest and abdominal lesions near or on critical organs. The applicator has undergone dose calibration and has moved forward to clinical application.
更多
查看译文
关键词
IORT, inclined applicator, leakage dose, uniformity, output calibration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要