Longitudinal Mixing in Flows with Submerged Rigid Aquatic Canopies

WATER(2023)

引用 0|浏览1
暂无评分
摘要
The presence of dense submerged vegetation alters mixing characteristics in open channel flows as they cause differential velocities inside and above canopies. The prediction models for longitudinal mixing in the presence of submerged canopies often use the drag coefficient to represent the canopy, which limits the usability of the models when the canopy properties are not fully understood. Here, attempts were made to present a methodology which can be used for deriving the coefficient of longitudinal dispersion in the presence of submerged vegetation based on velocity measurements, using a mixing length approach to model turbulence. An experimental study was conducted in a large-scale laboratory facility to investigate the longitudinal dispersion characteristics in open channel flow with submerged aquatic vegetation canopies. Detailed velocity and solute tracer measurements were undertaken for a representative range of flow velocities. The velocity measurements were used for deriving turbulent shear stress, mixing length, and diffusivity using established theoretical and empirical relationships to derive the longitudinal dispersion. The longitudinal dispersion measured in two locations in the water column for the two canopy submergences was discussed based on the amount of vertical mixing and differential advection. The canopy with a smaller stem length (i.e., higher submergence ratio) has a higher vertical diffusivity, resulting in increased vertical mixing in the water column. The canopy with the higher stem length (i.e., lower submergence ratio) consists of minimal vertical diffusivity, causing the longitudinal dispersion measured above the canopy to be significantly high, even though the longitudinal dispersion measured inside the canopy is much lower. The mathematical model which was adapted for calculating the coefficient of longitudinal dispersion and the tracer results show good agreement, indicating that the N-zone model can accurately predict the longitudinal dispersion in submerged aquatic canopies when used with the presented methodology.
更多
查看译文
关键词
submerged rigid aquatic canopies,flows
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要