Potato Leaf Area Index Estimation Using Multi-Sensor Unmanned Aerial Vehicle (UAV) Imagery and Machine Learning

REMOTE SENSING(2023)

引用 0|浏览10
暂无评分
摘要
Potato holds significant importance as a staple food crop worldwide, particularly in addressing the needs of a growing population. Accurate estimation of the potato Leaf Area Index (LAI) plays a crucial role in predicting crop yield and facilitating precise management practices. Leveraging the capabilities of UAV platforms, we harnessed their efficiency in capturing multi-source, high-resolution remote sensing data. Our study focused on estimating potato LAI utilizing UAV-based digital red-green-blue (RGB) images, Light Detection and Ranging (LiDAR) points, and hyperspectral images (HSI). From these data sources, we computed four sets of indices and employed them as inputs for four different machine-learning regression models: Support Vector Regression (SVR), Random Forest Regression (RFR), Histogram-based Gradient Boosting Regression Tree (HGBR), and Partial Least-Squares Regression (PLSR). We assessed the accuracy of individual features as well as various combinations of feature levels. Among the three sensors, HSI exhibited the most promising results due to its rich spectral information, surpassing the performance of LiDAR and RGB. Notably, the fusion of multiple features outperformed any single component, with the combination of all features of all sensors achieving the highest R-2 value of 0.782. HSI, especially when utilized in calculating vegetation indices, emerged as the most critical feature in the combination experiments. LiDAR played a relatively smaller role in potato LAI estimation compared to HSI and RGB. Additionally, we discovered that the RFR excelled at effectively integrating features.
更多
查看译文
关键词
unmanned aerial vehicle,uav,leaf,imagery,machine learning,multi-sensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要