Constructing a Triangle Ensemble of Pt Clusters for Enhanced Direct-Pathway Electrocatalysis of Formic Acid Oxidation

CHEMISTRY-SWITZERLAND(2023)

引用 0|浏览3
暂无评分
摘要
The pursuit of operational advancements in direct formic acid fuel cells (DFAFCs) necessitates the development of high-performance platinum (Pt)-based catalysts for formic acid electrooxidation (FAOR). However, FAOR on Pt-based catalysts follows a dual pathway mechanism, in which the direct pathway is a preferred route due to its efficient dehydrogenation process. Conversely, the indirect pathway results in the generation of adsorbed CO species, a process that deleteriously poisons the active sites of the catalyst, with CO species only being oxidizable at higher potentials, causing a significant compromise in catalyst performance. Herein, we have successfully synthesized Pt-C3N4@CNT, where three Pt clusters are precisely dispersed in a triplet form within the C3N4 by virtue of the unique structure of C3N4. The mass activity for the direct pathway (0.44 V) delivered a current density of 1.91 A mgPt-1, while the indirect pathway (0.86 V) had no obvious oxidation peak. The selectivity of Pt-C3N4@CNT catalysts for the direct pathway of FAOR was improved due to the special structure of C3N4, which facilitates the dispersion of Pt tri-atoms in the structure and the electronic interaction with Pt. In this study, we provide a new strategy for the development of highly active and selective catalysts for DFAFCs.
更多
查看译文
关键词
formic acid, chemical anchoring, selectivity, direct pathway, fuel cell, atomic dispersion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要