Contextualized Structural Self-supervised Learning for Ontology Matching

CoRR(2023)

引用 0|浏览1
暂无评分
摘要
Ontology matching (OM) entails the identification of semantic relationships between concepts within two or more knowledge graphs (KGs) and serves as a critical step in integrating KGs from various sources. Recent advancements in deep OM models have harnessed the power of transformer-based language models and the advantages of knowledge graph embedding. Nevertheless, these OM models still face persistent challenges, such as a lack of reference alignments, runtime latency, and unexplored different graph structures within an end-to-end framework. In this study, we introduce a novel self-supervised learning OM framework with input ontologies, called LaKERMap. This framework capitalizes on the contextual and structural information of concepts by integrating implicit knowledge into transformers. Specifically, we aim to capture multiple structural contexts, encompassing both local and global interactions, by employing distinct training objectives. To assess our methods, we utilize the Bio-ML datasets and tasks. The findings from our innovative approach reveal that LaKERMap surpasses state-of-the-art systems in terms of alignment quality and inference time. Our models and codes are available here: https://github.com/ellenzhuwang/lakermap.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络