Top-k contrast order-preserving pattern mining

IEEE Transactions on Knowledge and Data Engineering(2023)

引用 0|浏览55
暂无评分
摘要
Recently, order-preserving pattern (OPP) mining, a new sequential pattern mining method, has been proposed to mine frequent relative orders in a time series. Although frequent relative orders can be used as features to classify a time series, the mined patterns do not reflect the differences between two classes of time series well. To effectively discover the differences between time series, this paper addresses the top-k contrast OPP (COPP) mining and proposes a COPP-Miner algorithm to discover the top-k contrast patterns as features for time series classification, avoiding the problem of improper parameter setting. COPP-Miner is composed of three parts: extreme point extraction to reduce the length of the original time series, forward mining, and reverse mining to discover COPPs. Forward mining contains three steps: group pattern fusion strategy to generate candidate patterns, the support rate calculation method to efficiently calculate the support of a pattern, and two pruning strategies to further prune candidate patterns. Reverse mining uses one pruning strategy to prune candidate patterns and consists of applying the same process as forward mining. Experimental results validate the efficiency of the proposed algorithm and show that top-k COPPs can be used as features to obtain a better classification performance.
更多
查看译文
关键词
Contrast pattern,order-preserving,time series classification,pattern mining
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要