WeChat Mini Program
Old Version Features

Statistical Physics, Bayesian Inference and Neural Information Processing

JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT(2024)

UCL

Cited 0|Views30
Abstract
Lecture notes from the course given by Professor Sara A. Solla at the Les Houches summer school on "Statistical physics of Machine Learning". The notes discuss neural information processing through the lens of Statistical Physics. Contents include Bayesian inference and its connection to a Gibbs description of learning and generalization, Generalized Linear Models as a controlled alternative to backpropagation through time, and linear and non-linear techniques for dimensionality reduction.
More
Translated text
Key words
machine learning,nonlinear dynamics,optimization under uncertainty,stochastic processes
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined