Cancer-Associated Fibroblast Mimetic AIE Probe for Precision Imaging-Guided Full-Cycle Management of Ovarian Cancer Surgery.

Analytical chemistry(2023)

引用 0|浏览6
暂无评分
摘要
Fluorescence imaging can improve surgical accuracy in ovarian cancer, but a high signal-to-noise ratio is crucial for tiny metastatic cancers. Meanwhile, intraoperative fluorescent surgical navigation modalities alone are still insufficient to completely remove ovarian cancer lesions, and the recurrence rate remains high. Here, we constructed a cancer-associated fibroblasts (CAFs)-mimetic aggregation-induced emission (AIE) probe to enable full-cycle management of surgery that eliminates recurrence. AIE molecules (P3-PPh) were packed in hollow mesoporous silica nanoparticles (HMSNs) to form HMSN-probe and then coated with a CAFs membrane to prepare CAF-probe. First, due to the negative potential of the CAF-probe, the circulation time in vivo is elevated, which facilitates passive tumor targeting. Second, the CAF-probe avoids its clearance by the immune system and improves the bioavailability. Finally, the fibronectin on the CAF-probe specifically binds to integrin α-5 (ITGA5), which is highly expressed in ovarian cancer cells, enabling fluorescence imaging with a contrast of up to 8.6. CAF-probe-based fluorescence imaging is used to evaluate the size and location of ovarian cancer before surgery (preoperative evaluation), to guide tumor removal during surgery (intraoperative navigation), and to monitor tumor recurrence after surgery (postoperative monitoring), ultimately significantly improving the efficiency of surgery and completely eliminating tumor recurrence. In conclusion, we constructed a CAFs mimetic AIE probe and established a full-cycle surgical management model based on its precise imaging properties, which significantly reduced the recurrence of ovarian cancer.
更多
查看译文
关键词
fibroblast,cancer-associated,imaging-guided,full-cycle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要