1.7 GHz long-term evolution radiofrequency electromagnetic field with efficient thermal control has no effect on the proliferation of different human cell types

Jaeseong Goh, Dongwha Suh,Sangbong Jeon,Youngseung Lee,Nam Kim,Kiwon Song

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览1
暂无评分
摘要
Long-term evolution (LTE) radiofrequency electromagnetic field (RF-EMF) is widely used in communication technologies. As a result, the influence of RF-EMF on biological systems is a major public concern, and its physiological effects remain controversial. In our previous study, we showed that continuous exposure of various human cell types to 1.7 GHz LTE RF-EMF at specific absorption rate (SAR) of 2 W/Kg for 72 h can induce cellular senescence. To understand the precise cellular effects of LTE RF-EMF, we elaborated the 1.7 GHz RF-EMF cell exposure system used in the previous study by replacing the RF signal generator and developing a software-based feedback system to improve the exposure power stability. This refinement of the 1.7 GHz LTE RF-EMF generator facilitated the automatic regulation of RF-EMF exposure, maintaining target power levels within a 3% range and a constant temperature even during the 72-h exposure period. With the improved experimental setup, we examined the effect of continuous exposure to 1.7 GHz LTE RF-EMF at up to SAR of 8 W/Kg of adipose tissue-derived stem cells and Huh7, HeLa, and B103 cells. Surprisingly, the proliferation of all cell types, which displayed different growth rates, did not change significantly compared with that of the unexposed controls. However, when the thermal control system was turned off and the subsequent temperature increase induced by the RF-EMF was not controlled during continuous exposure to SAR of 8 W/Kg LTE RF-EMF, cellular proliferation increased by 35.2% at the maximum. These observations strongly suggest that the cellular effects attributed to 1.7 GHz LTE RF-EMF exposure were primarily due to the induced thermal changes, rather than the RF-EMF exposure itself. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
electromagnetic field,ghz,long-term
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要