Counting Vanishing Matrix-Vector Products

International Conference and Workshops on Algorithms and Computation(2023)

引用 0|浏览0
暂无评分
摘要
Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces: Let $\mathbf{v} \in \mathbb{Q}^d$ be a rational vector, $(T_{1}, T_{2} \ldots T_{m})$ a list of $d \times d$ rational matrices, $S \in \mathbb{Q}^{h \times d}$ a rational matrix not necessarily square and $k$ a parameter. The goal is to compute the number of ways one can choose $k$ matrices $T_{i_1}, T_{i_2}, \ldots, T_{i_k}$ from the list such that $ST_{i_k} \cdots T_{i_1}\mathbf{v} = \mathbf{0} \in \mathbb{Q}^h$. In this paper, we show that this problem is $\# W[2]$-hard for parameter $k$. %This strengthens a result of Matou\v{s}ek, who showed $\# W[1]$-hardness of that problem. As a consequence, computing the $k$-th homotopy group of a $d$-dimensional topological space for $d > 3$ is $\# W[2]$-hard for parameter $k$. We also discuss a decision version of the problem and its several modifications for which we show $W[1]/W[2]$-hardness. This is in contrast to the parameterized $k$-sum problem, which is only $W[1]$-hard (Abboud-Lewi-Williams, ESA'14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized the matrix dimensions and the order of the field.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要