Parallel-mentoring for Offline Model-based Optimization

NeurIPS(2023)

引用 2|浏览40
暂无评分
摘要
We study offline model-based optimization to maximize a black-box objective function with a static dataset of designs and scores. These designs encompass a variety of domains, including materials, robots and DNA sequences. A common approach trains a proxy on the static dataset to approximate the black-box objective function and performs gradient ascent to obtain new designs. However, this often results in poor designs due to the proxy inaccuracies for out-of-distribution designs. Recent studies indicate that: (a) gradient ascent with a mean ensemble of proxies generally outperforms simple gradient ascent, and (b) a trained proxy provides weak ranking supervision signals for design selection. Motivated by (a) and (b), we propose \textit{parallel-mentoring} as an effective and novel method that facilitates mentoring among parallel proxies, creating a more robust ensemble to mitigate the out-of-distribution issue. We focus on the three-proxy case and our method consists of two modules. The first module, \textit{voting-based pairwise supervision}, operates on three parallel proxies and captures their ranking supervision signals as pairwise comparison labels. These labels are combined through majority voting to generate consensus labels, which incorporate ranking supervision signals from all proxies and enable mutual mentoring. However, label noise arises due to possible incorrect consensus. To alleviate this, we introduce an \textit{adaptive soft-labeling} module with soft-labels initialized as consensus labels. Based on bi-level optimization, this module fine-tunes proxies in the inner level and learns more accurate labels in the outer level to adaptively mentor proxies, resulting in a more robust ensemble. Experiments validate the effectiveness of our method. Our code is available here.
更多
查看译文
关键词
optimization,parallel-mentoring,model-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要