Efficiency of optimal fluoroscopic projection angle defined by computed tomography angiography for left atrial appendage closure.

Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese(2023)

引用 0|浏览12
暂无评分
摘要
BACKGROUND:Left atrial appendage (LAA) closure (LAAC) procedures are conventionally performed using empirical fluoroscopic viewing angles. However, because the LAA is a highly variable anatomical structure, these angles cannot depict the LAA in the optimal position. The present study aimed to assess the efficiency of using a novel optimal fluoroscopic projection angle (OPA) for LAAC and to validate its feasibility. METHODS:The OPAs of the derivation cohort were acquired using cardiac computed tomography angiography (CCTA) to assess its superiority for depicting LAA depth versus traditional working angles (TAs) of RAO 30°, CAU 20°. The practicability of OPA-guided LAAC was demonstrated by comparison between clinical data from the validation cohort and those from a propensity-score matched (PSM) control group, as well as randomized controlled studies investigating LAAC. RESULTS:Of 705 patients in the derivation cohort, the median OPA was RAO 46°, CAU 31°. Compared with TA, the OPA depicted a longer mean (±SD) LAA depth (5.1 ± 4.4) mm and a larger orifice diameter (1.1 ± 1.1 mm), (P < 0.0001 for both). All 38 OPA-guided LAACs were successful, with a shorter mean procedure duration (42.9 ± 12.3 min versus [vs.] 107.2 ± 41.5 min; P < 0.0001) and reduced device consumption (1.08 vs. 1.5 per case), compared with the PSM control group. At the 3-month follow-up, the incidence of peri-device leak was 52.6% (20/38) detected by CCTA, with a mean leakage of 1.6 ± 0.8 mm. CONCLUSION:By unfolding the LAA depth and orifice diameter for a better view, OPA demonstrated the potential to optimize LAAC procedural efficiency, although further larger-scale studies are required to confirm this.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要