The FLAMINGO project: revisiting the $S_8$ tension and the role of baryonic physics

arXiv (Cornell University)(2023)

引用 0|浏览14
暂无评分
摘要
A number of recent studies have found evidence for a tension between observations of large-scale structure (LSS) and the predictions of the standard model of cosmology with the cosmological parameters fit to the cosmic microwave background (CMB). The origin of this '$S_8$ tension' remains unclear, but possibilities include new physics beyond the standard model, unaccounted for systematic errors in the observational measurements and/or uncertainties in the role that baryons play. Here we carefully examine the latter possibility using the new FLAMINGO suite of large-volume cosmological hydrodynamical simulations. We project the simulations onto observable harmonic space and compare with observational measurements of the power and cross-power spectra of cosmic shear, CMB lensing, and the thermal Sunyaev-Zel'dovich (tSZ) effect. We explore the dependence of the predictions on box size and resolution, cosmological parameters including the neutrino mass, and the efficiency and nature of baryonic 'feedback'. Despite the wide range of astrophysical behaviours simulated, we find that baryonic effects are not sufficiently large to remove the $S_8$ tension. Consistent with recent studies, we find the CMB lensing power spectrum is in excellent agreement with the standard model, whilst the cosmic shear power spectrum, tSZ effect power spectrum, and the cross-spectra between shear, CMB lensing, and the tSZ effect are all in varying degrees of tension with the CMB-specified standard model. These results suggest that some mechanism is required to slow the growth of fluctuations at late times and/or on non-linear scales, but that it is unlikely that baryon physics is driving this modification.
更多
查看译文
关键词
physics,flamingo project
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要