Proteome analysis of CD5-positive diffuse large B cell lymphoma FFPE tissue reveals downregulation of DDX3X, DNAJB1, and B cell receptor signaling pathway proteins including BTK and Immunoglobulins

Clinical Proteomics(2023)

引用 0|浏览9
暂无评分
摘要
Background The molecular pathology of diffuse large B cell lymphoma (DLBCL) has been extensively studied. Among DLBCL subtypes, the prognosis of CD5-positive DLBCL is worse than that of CD5-negative DLBCL, considering the central nervous system relapse and poor response to R-CHOP therapy. However, the molecular mechanisms underlying the tumorigenesis and progression of CD5-positive DLBCL remain unknown. Methods To identify molecular markers that can be targeted for treating DLBCL, a proteomic study was performed using liquid chromatography-mass spectrometry with chemically pretreated formalin-fixed paraffin-embedded specimens from CD5-positive ( n = 5) and CD5-negative DLBCL patients ( n = 6). Results Twenty-one proteins showed significant downregulation in CD5-positive DLBCL compared to CD5-negative DLBCL. Principal component analysis of protein expression profiling in CD5-positive and CD5-negative DLBCL revealed that DNAJB1, DDX3X, and BTK, which is one of the B cell phenotypic proteins, were the most significantly downregulated proteins and served as biomarkers that distinguished both groups. Additionally, a set of immunoglobulins, including IgG4, exhibited significant downregulation. Immunohistochemistry analysis for BTK demonstrated reduced staining in CD5-positive DLBCL compared to CD5-negative DLBCL. Conclusions In conclusion, DNAJB1 and DDX3X, BTK, and a set of immunoglobulins are promising biomarkers. Probably, the suppression of BCR signaling is the unique phenotype of CD5-positive DLBCL. This formalin-fixed paraffin-embedded (FFPE)-based profiling may help to develop novel therapeutic molecularly targeted drugs for treating DLBCL.
更多
查看译文
关键词
Biomarkers,Bruton tyrosine kinase,CD5-positive Diffuse large B cell lymphoma,DNAJB1,DDX3X,Formalin-fixed paraffin-embedded specimen,Immunoglobulin,Proteomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要