VAPOR: Holonomic Legged Robot Navigation in Outdoor Vegetation Using Offline Reinforcement Learning


引用 0|浏览5
We present VAPOR, a novel method for autonomous legged robot navigation in unstructured, densely vegetated outdoor environments using Offline Reinforcement Learning (RL). Our method trains a novel RL policy from unlabeled data collected in real outdoor vegetation. This policy uses height and intensity-based cost maps derived from 3D LiDAR point clouds, a goal cost map, and processed proprioception data as state inputs, and learns the physical and geometric properties of the surrounding vegetation such as height, density, and solidity/stiffness for navigation. Instead of using end-to-end policy actions, the fully-trained RL policy's Q network is used to evaluate dynamically feasible robot actions generated from a novel adaptive planner capable of navigating through dense narrow passages and preventing entrapment in vegetation such as tall grass and bushes. We demonstrate our method's capabilities on a legged robot in complex outdoor vegetation. We observe an improvement in success rates, a decrease in average power consumption, and decrease in normalized trajectory length compared to both existing end-to-end offline RL and outdoor navigation methods.
AI 理解论文