Analytical Model Coupling Ekman and Surface Layer Structure in Atmospheric Boundary Layer Flows

Boundary-Layer Meteorology(2024)

引用 0|浏览2
暂无评分
摘要
We introduce an analytical model that describes the vertical structure of Ekman boundary layer flows coupled to the Monin-Obukhov Similarity Theory (MOST) surface layer representation, which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric conditions. The model is based on a self-similar profile of horizontal stress for both CNBL and SBL flows that merges the classic 3/2 power law profile with a MOST-consistent stress profile in the surface layer. The velocity profiles are then obtained from the Ekman momentum balance equation. The same stress model is used to derive a new self-consistent Geostrophic Drag Law (GDL). We determine the ABL height (h) using an equilibrium boundary layer height model and parameterize the surface heat flux for quasi-steady SBL flows as a function of a prescribed surface temperature cooling rate. The ABL height and GDL equations can then be solved together to obtain the friction velocity (u_*) and the cross-isobaric angle ( α _0 ) as a function of known input parameters such as the Geostrophic wind speed and surface roughness (z_0) . We show that the model predictions agree well with simulation data from the literature and newly generated Large Eddy Simulations (LES). These results indicate that the proposed model provides an efficient and relatively accurate self-consistent approach for predicting the mean wind velocity distribution in CNBL and SBL flows.
更多
查看译文
关键词
Atmospheric boundary layer,Geostrophic drag law,Large eddy simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要