Tunable Light-Actuated Interpenetrating Networks of Silk Fibroin and Gelatin for Tissue Engineering and Flexible Biodevices

ACS biomaterials science & engineering(2023)

引用 0|浏览2
暂无评分
摘要
Soft materials with tunable properties are valuable for applications such as tissue engineering, electronic skins, and human-machine interfaces. Materials that are nature-derived offer additional advantages such as biocompatibility, biodegradability, low-cost sourcing, and sustainability. However, these materials often have contrasting properties that limit their use. For example, silk fibroin (SF) has high mechanical strength but lacks processability and cell-adhesive domains. Gelatin, derived from collagen, has excellent biological properties, but is fragile and lacks stability. To overcome these limitations, composites of gelatin and SF have been explored. However, mechanically robust self-supported matrices and electrochemically active or micropatterned substrates were not demonstrated. In this study, we present a composite of photopolymerizable SF and photogelatin, termed photofibrogel (PFG). By incorporating photoreactive properties in both SF and gelatin, control over material properties can be achieved. The PFG composite can be easily and rapidly formed into free-standing, high-resolution architectures with tunable properties. By optimizing the ratio of SF to gelatin, properties such as swelling, mechanical behavior, enzymatic degradation, and patternability are tailored. The PFG composite allows for macroscale and microscale patterning without significant swelling, enabling the fabrication of structures using photolithography and laser cutting techniques. PFG can be patterned with electrically conductive materials, making it suitable for cell guidance and stimulation. The versatility, mechanical robustness, bioactivity, and electrochemical properties of PFG are shown for skeletal muscle tissue engineering using C2C12 cells as a model. Overall, such composite biomaterials with tunable properties have broad potential in flexible bioelectronics, wound healing, regenerative medicine, and food systems.
更多
查看译文
关键词
silk fibroin,photogelatin,interpenetratingnetwork,flexible,micropatterning,films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要