A neural network model for the evolution of learning in changing environments

PLOS COMPUTATIONAL BIOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Learning from past experience is an important adaptation and theoretical models may help to understand its evolution. Many of the existing models study simple phenotypes and do not consider the mechanisms underlying learning while the more complex neural network models often make biologically unrealistic assumptions and rarely consider evolutionary questions. Here, we present a novel way of modelling learning using small neural networks and a simple, biology-inspired learning algorithm. Learning affects only part of the network, and it is governed by the difference between expectations and reality. We use this model to study the evolution of learning under various environmental conditions and different scenarios for the trade-off between exploration (learning) and exploitation (foraging). Efficient learning readily evolves in our individual-based simulations. However, in line with previous studies, the evolution of learning is less likely in relatively constant environments, where genetic adaptation alone can lead to efficient foraging, or in short-lived organisms that cannot afford to spend much of their lifetime on exploration. Once learning does evolve, the characteristics of the learning strategy (i.e. the duration of the learning period and the learning rate) and the average performance after learning are surprisingly little affected by the frequency and/or magnitude of environmental change. In contrast, an organism's lifespan and the distribution of resources in the environment have a strong effect on the evolved learning strategy: a shorter lifespan and a narrow resource distribution reduce the likelihood of learning to evolve. Interestingly, a longer learning period does not always lead to better performance, indicating that the evolved neural networks differ in the effectiveness of learning. Overall, however, we show that a biologically inspired, yet relatively simple, learning mechanism can evolve to lead to an efficient adaptation in a changing environment. The ability to learn from experience is an important adaptation. However, it is still unclear how learning is shaped by natural selection. Here, we present a novel way of modelling the evolution of learning using small neural networks and a simple, biology-inspired learning mechanism. Computer simulations reveal that efficient learning readily evolves in this model. However, the evolution of learning is less likely in relatively constant environments (where evolved inborn preferences can guide animal behaviour) and in short-lived organisms (that cannot afford to spend much of their lifetime on learning). If learning does evolve, the evolved learning strategy is strongly affected by the lifespan and environmental richness but surprisingly little by the rate and degree of environmental change. In summary, we show that a simple and biologically plausible mechanism can help understand the evolution of learning and the structure of the evolved learning strategies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要