On-Surface Stereochemical Characterization of a Highly Curved Chiral Nanographene by Noncontact Atomic Force Microscopy and Scanning Tunneling Microscopy

CCS CHEMISTRY(2023)

引用 0|浏览7
暂无评分
摘要
A highly distorted chiral nanographene structure composed of triple corannulene-fused [5]helicenes is prepared with the help of the Heck reaction and oxidative photocyclization with an overall isolated yield of 28%. The complex three-dimensional (3D) structure of the bowl-helix hybrid nanostructure is studied by a combination of non contact atomic force microscopy (AFM) and scanning tunneling microscopy (STM) on the Cu(111) surface, density functional theory calculations, AFM/STM simulations, and high-performance liquid chromatography-electronic circular dichroism analysis. This examination reveals a molecular structure in which the three bowl-shaped corannulene bladesd position themselves in a C3-symmetric fashion around a highly twisted triphenylene core. The molecule appears to be shaped like a propeller in which the concave side of the bowls face away from the connected [5]helicene motif. The chirality of the nanostructure is confirmed by the direct visualization of both MMM and PPP enantiomers at the single-molecule level by scanning probe microscopies. These results underline that submolecular resolution imaging by AFM/STM is a powerful real-space tool for the stereochemical characterization of 3D curved chiral nanographene structures.
更多
查看译文
关键词
chirality at surfaces, noncontact atomicforce microscopy, scanning tunnelling microscopy, submolecular resolution imaging, single-bond resolution, curved nanographenes, multiple helicenes, chiralnanostructures, bowl-helix hybrids, scanning probe microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要