Degradation Profiling of Nardosinone at High Temperature and in Simulated Gastric and Intestinal Fluids

MOLECULES(2023)

引用 0|浏览2
暂无评分
摘要
Nardosinone, a predominant bioactive product from Nardostachys jatamansi DC, is well-known for its promising therapeutic applications, such as being used as a drug on anti-inflammatory, antidepressant, cardioprotective, anti-neuroinflammatory, anti-arrhythmic, anti-periodontitis, etc. However, its stability under varying environmental conditions and its degradation products remain unclear. In this study, four main degradation products, including two previously undescribed compounds [2-deoxokanshone M (64.23%) and 2-deoxokanshone L (1.10%)] and two known compounds [desoxo-narchinol A (2.17%) and isonardosinone (3.44%)], were firstly afforded from the refluxed products of nardosinone in boiling water; their structures were identified using an analysis of the extensive NMR and X-ray diffraction data and the simulation and comparison of electronic circular dichroism spectra. Compared with nardosinone, 2-deoxokanshone M exhibited potent vasodilatory activity without any of the significant anti-neuroinflammatory activity that nardosinone contains. Secondly, UPLC-PDA and UHPLC-DAD/Q-TOF MS analyses on the degradation patterns of nardosinone revealed that nardosinone degraded more easily under high temperatures and in simulated gastric fluid compared with the simulated intestinal fluid. A plausible degradation pathway of nardosinone was finally proposed using nardosinonediol as the initial intermediate and involved multiple chemical reactions, including peroxy ring-opening, keto-enol tautomerization, oxidation, isopropyl cleavage, and pinacol rearrangement. Our findings may supply certain guidance and scientific evidence for the quality control and reasonable application of nardosinone-related products.
更多
查看译文
关键词
nardosinone,degradation profiling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要