Characterization and Magnetic Properties of Sintered Glass-Ceramics from Dispersed Fly Ash Microspheres

MAGNETOCHEMISTRY(2023)

引用 0|浏览11
暂无评分
摘要
The recycling of hazardous industrial waste into high-tech materials with desired properties is of considerable interest since it provides optimal alternatives for its final disposal. Coal fly ash, the major waste generated by coal-fired power plants, contains significant quantities of dispersed microspheres with a diameter smaller than 10 & mu;m, which are anthropogenic atmospheric pollutants PM10. Due to their composition and fine-grained powder morphology, they can be converted into sintered products. In this study, dispersed microspheres from class C fly ash were directly sintered without any additive to form high-strength glass-ceramics with magnetic properties. The optimum processing conditions were achieved at a temperature of 1200 & DEG;C, at which samples with a compressive strength of 100.6 MPa were obtained. Sintering reduces the quantity of the glass phase and promotes the formation of larnite, Fe-spinel, ye'elimite, and ternesite. Mossbauer measurements show that the relative concentration of the magnetic phase compared to the paramagnetic one rises almost in order. The sintered sample demonstrates a narrower distribution of the hyperfine magnetic field and a significantly lower value of the coercive field of 25 Oe, which allows proposing such materials as soft magnetic materials. The presented results demonstrate promising industrial applications of hazardous PM10 to minimize solid waste pollution.
更多
查看译文
关键词
magnetic properties,glass-ceramics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要