RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m6A modification writer METTL3/14 complex in human breast tissues.

Biosensors & bioelectronics(2023)

引用 0|浏览12
暂无评分
摘要
N6-methyladenosine (m6A) is an ubiquitous post-transcriptional modification catalyzed by METTL3/14 complex in eukaryotic mRNAs. The abnormal METTL3/14 complex activity affects multiple steps of RNA metabolism and may induce various diseases. Herein, we demonstrate the RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m6A modification writer METTL3/14 complex in human breast tissues. METTL3/14 complex can catalyze the methylation of RNA probe to prevent it from being cleaved by MazF. The intact RNA probe is recognized by the magnetic bead (MB)-capture probe conjugates to induce duplex-specific nuclease (DSN)-assisted cyclic digestion, exposing numerous shorter ssDNAs with 3'-OH end. The shorter ssDNAs on the MB surface can act as the primers to initiate terminal deoxynucleotidyl transferase (TdT)-enhanced tyramide signal amplification (TSA), forming the Cy5 fluorescence-encoded nanostructures. After magnetic separation, the Cy5 fluorescence-encoded nanostructures are digested by DNase I to release abundant Cy5 fluorophores that can be simply quantified by fluorescence measurement. This assay achieves good specificity and high sensitivity with a detection limit of 58.8 aM, and it can screen METTL3/14 complex inhibitors and quantify METTL3/14 complex activity at the single-cell level. Furthermore, this assay can differentiate the METTL3/14 complex level in breast cancer patient tissues and healthy volunteer tissues.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要