Surface-active antibiotic production is a multifunctional adaptation for postfire microbes.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览2
暂无评分
摘要
Wildfires affect soils in multiple ways, leading to numerous challenges for colonizing microbes. While it is thought that fire-adapted microbes lie at the forefront of postfire ecosystem recovery, the specific strategies that these microbes use to thrive in burned soils remain largely unknown. Through bioactivity screening of bacterial isolates from burned soils, we discovered that several Paraburkholderia spp. isolates produced a set of unusual rhamnolipid surfactants with a natural methyl ester modification. These rhamnolipid methyl esters (RLMEs) exhibited enhanced antimicrobial activity against other postfire microbial isolates, including pyrophilous Pyronema fungi and Amycolatopsis bacteria, compared to the typical rhamnolipids made by organisms such as Pseudomonas spp . RLMEs also showed enhanced surfactant properties and facilitated bacterial motility on agar surfaces. In vitro assays further demonstrated that RLMEs improved aqueous solubilization of polycyclic aromatic hydrocarbons, which are potential carbon sources found in char. Identification of the rhamnolipid biosynthesis genes in the postfire isolate, Paraburkholderia caledonica str. F3, led to the discovery of rhlM , whose gene product is responsible for the unique methylation of rhamnolipid substrates. RhlM is the first characterized bacterial representative of a large class of integral membrane methyltransferases that are widespread in bacteria. These results indicate multiple roles for RLMEs in the postfire lifestyle of Paraburkholderia isolates, including enhanced dispersal, solubilization of potential nutrients, and inhibition of competitors. Our findings shed new light on the chemical adaptations that bacteria employ in order to navigate, grow, and outcompete other soil community members in postfire environments. Significance Statement:Wildfires are increasing in frequency and intensity at a global scale. Microbes are the first colonizers of soil after fire events, but the adaptations that help these organisms survive in postfire environments are poorly understood. In this work, we show that a bacterium isolated from burned soil produces an unusual rhamnolipid biosurfactant that exhibits antimicrobial activity, enhances motility, and solubilizes potential nutrients derived from pyrolyzed organic matter. Collectively, our findings demonstrate that bacteria leverage specialized metabolites with multiple functions to meet the demands of life in postfire environments. Furthermore, this work reveals the potential of probing perturbed environments for the discovery of unique compounds and enzymes.
更多
查看译文
关键词
postfire microbes,surface-active
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要