Mineralization of a Fully Halogenated Organic Compound by Persulfate under Conditions Relevant to in Situ Reduction and Oxidation: Reduction of Hexachloroethane by Ethanol Addition Followed by Oxidation

Environmental science & technology(2023)

引用 1|浏览2
暂无评分
摘要
Fully halogenated compounds are difficult to remediate by in situ chemical oxidation (ISCO) because carbon-halogen bonds react very slowly with the species that typically initiate contaminant transformation: sulfate radical (SO4 center dot-) and hydroxyl radical (center dot OH). To enable the remediation of this class of contaminants by persulfate (S2O82-)-based ISCO, we employed a two-phase process to dehalogenate and oxidize a representative halogenated compound (i.e., hexachloroethane). In the first phase, a relatively high concentration of ethanol (1.8 M) was added, along with concentrations of S2O82- that are typically used for ISCO (i.e., 450 mM). Hexachloroethane underwent rapid dehalogenation when carbon-centered radicals produced by the reaction of ethanol and radicals formed during S2O82- decomposition reacted with carbon-halogen bonds. Unlike conventional ISCO treatment, hexachloroethane transformation and S2O82- decomposition took place on the time scale of days without external heating or base addition. The presence of O-2, Cl-, and NO3- delayed the onset of hexachloroethane transformation when low concentrations of S2O82- (10 mM) were used, but these solutes had negligible effects when S2O82- was present at concentrations typical of in situ remediation (450 mM). The second phase of the reaction was initiated after most of the ethanol had been depleted when thermolytic S2O82- decomposition resulted in production of SO4 center dot- that oxidized the partially dehalogenated transformation products. With proper precautions, S2O82--based ISCO with ethanol could be a useful remediation technology for sites contaminated with fully halogenated compounds.
更多
查看译文
关键词
halogenated solvents,reductive dehalogenation,chlorate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要