Confucius: Iterative Tool Learning from Introspection Feedback by Easy-to-Difficult Curriculum

Shen Gao,Zhengliang Shi, Minghang Zhu, Bowen Fang,Xin Xin,Pengjie Ren,Zhumin Chen,Jun Ma, Zhaochun Ren

AAAI 2024(2024)

引用 0|浏览133
暂无评分
摘要
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extending the capability of LLMs. Although there are some works that employ open-source LLMs for the tool-learning task, most of them are trained in a controlled environment in which LLMs only learn to execute the human-provided tools. However, selecting proper tools from the large toolset is also a crucial ability for the tool-learning model to be applied in real-world applications. Existing methods usually directly employ self-instruction methods to train the model, which ignores differences in tool complexity. In this paper, we propose the Confucius a novel tool-learning framework to train LLM to use complicated tools in real-world scenarios, which contains two main phases: (1) We first propose a multi-stage learning method to teach the LLM to use various tools from an easy-to-difficult curriculum; (2) thenceforth, we propose the Iterative Self-instruct from Introspective Feedback (ISIF) to dynamically construct the dataset to improve the ability to use the complicated tool. Extensive experiments conducted on both controlled and real-world settings demonstrate the superiority of our tool-learning framework in the real-world application scenario compared to both tuning-free (e.g., ChatGPT, Claude) and tuning-based baselines (e.g., GPT4Tools).
更多
查看译文
关键词
NLP: (Large) Language Models,NLP: Applications
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要