BioSignal Copilot: Leveraging the power of LLMs in drafting reports for biomedical signals

medrxiv(2023)

引用 0|浏览61
暂无评分
摘要
Recent advances in Large Language Models (LLMs) have shown great potential in various domains, particularly in processing text-based data. However, their applicability to biomedical time-series signals (e.g. electrograms) remains largely unexplored due to the lack of a signal-to-text (sequence) engine to harness the power of LLMs. The application of biosignals has been growing due to the improvements in the reliability, noise and performance of front-end sensing, and back-end signal processing, despite lowering the number of sensing components (e.g. electrodes) needed for effective and long-term use (e.g. in wearable or implantable devices). One of the most reliable techniques used in clinical settings is producing a technical/clinical report on the quality and features of collected data and using that alongside a set of auxiliary or complementary data (e.g. imaging, blood tests, medical records). This work addresses the missing puzzle in implementing conversational artificial intelligence (AI), a reliable, technical and clinically relevant signal-to-text (Sig2Txt) engine. While medical foundation models can be expected, reports of Sig2Txt engine in large scale can be utilised in years to come to develop foundational models for a unified purpose. In this work, we propose a system (SignalGPT or BioSignal Copilot) that reduces medical signals to a freestyle or formatted clinical, technical report close to a brief clinical report capturing key features and characterisation of input signal. In its ideal form, this system provides the tool necessary to produce the technical input sequence necessary for LLMs as a step toward using AI in the medical and clinical domains as an assistant to clinicians and patients. To the best of our knowledge, this is the first system for bioSig2Txt generation, and the idea can be used in other domains as well to produce technical reports to harness the power of LLMs. This method also improves the interpretability and tracking (history) of information into and out of the AI models. We did implement this aspect through a buffer in our system. As a preliminary step, we verify the feasibility of the BioSignal Copilot (SignalGPT) using a clinical ECG dataset to demonstrate the advantages of the proposed system. In this feasibility study, we used prompts and fine-tuning to prevent fluctuations in response. The combination of biosignal processing and natural language processing offers a promising solution that improves the interpretability of the results obtained from AI, which also leverages the rapid growth of LLMs. ### Competing Interest Statement The authors have declared no competing interest. ### Funding Statement This study was partially funded by Children's Hospital at Westmead. ### Author Declarations I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained. Yes The details of the IRB/oversight body that provided approval or exemption for the research described are given below: The study used (or will use) ONLY openly available human data that were originally located at: I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals. Yes I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance). Yes I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable. Yes All data produced are available online at
更多
查看译文
关键词
biomedical signals,llms,reports
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要