Direct observation of negative cooperativity in a detoxification enzyme at the atomic level by Electron Paramagnetic Resonance spectroscopy and simulation

PROTEIN SCIENCE(2023)

引用 2|浏览1
暂无评分
摘要
The catalytic activity of human glutathione S-transferase A1-1 (hGSTA1-1), a homodimeric detoxification enzyme, is dependent on the conformational dynamics of a key C-terminal helix a9 in each monomer. However, the structural details of how the two monomers interact upon binding of substrates is not well understood and the structure of the ligand-free state of the hGSTA1-1 homodimer has not been resolved. Here, we used a combination of electron paramagnetic resonance (EPR) distance measurements and weighted ensemble (WE) simulations to characterize the conformational ensemble of the ligand-free state at the atomic level. EPR measurements reveal a broad distance distribution between a pair of Cu(II) labels in the ligand-free state that gradually shifts and narrows as a function of increasing ligand concentration. These shifts suggest changes in the relative positioning of the two a9 helices upon ligand binding. WE simulations generated unbiased pathways for the seconds-timescale transition between alternate states of the enzyme, leading to the generation of atomically detailed structures of the ligand-free state. Notably, the simulations provide direct observations of negative cooperativity between the monomers of hGSTA1-1, which involve the mutually exclusive docking of a9 in each monomer as a lid over the active site. We identify key interactions between residues that lead to this negative cooperativity. Negative cooperativity may be essential for interaction of hGSTA1-1 with a wide variety of toxic substrates and their subsequent neutralization. More broadly, this work demonstrates the power of integrating EPR distances with WE rare-events sampling strategy to gain mechanistic information on protein function at the atomic level.
更多
查看译文
关键词
detoxification enzyme,negative cooperativity,atomic level
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要