Joint Mirror Procedure: Controlling False Discovery Rate for Identifying Simultaneous Signals

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
In many applications, the process of identifying a specific feature of interest often involves testing multiple hypotheses for their joint statistical significance. Examples include mediation analysis which simultaneously examines the existence of the exposure-mediator and the mediator-outcome effects, and replicability analysis aiming to identify simultaneous signals that exhibit statistical significance across multiple independent experiments. In this study, we present a new approach called joint mirror (JM) procedure that effectively detects such features while maintaining false discovery rate (FDR) control in finite samples. The JM procedure employs an iterative method that gradually shrinks the rejection region based on progressively revealed information until a conservative estimate of the false discovery proportion (FDP) is below the target FDR level. Additionally, we introduce a more stringent error measure, known as the modified FDR (mFDR), which assigns weights to each false discovery based on its number of null components. We demonstrate that, under appropriate assumptions, the JM procedure controls the mFDR in finite samples. To implement the JM procedure, we propose an efficient algorithm that can incorporate partial ordering information. Through extensive simulations, we demonstrate that our procedure effectively controls the mFDR and enhances statistical power across various scenarios. Finally, we showcase the utility of our method by applying it to real-world mediation and replicability analyses.
更多
查看译文
关键词
simultaneous signals,false discovery rate,mirror
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要