Nordic-pole walking speed effects on muscle forces working against gravity

Nihon kikai gakkai ronbunshu(2023)

引用 0|浏览0
暂无评分
摘要
Currently, elderly people of 65 years and older constitute 29.1% of Japan’s population. Frail patients are 8.7% of all elderly people 65 and older. Frailty is a weak state both physically and mentally. The probability of illness increases with age. Pole walking is an exercise designed to improve muscle strength and thereby prevent frailty in elderly people. This study applied musculoskeletal model analysis during pole walking and normal walking to clarify pole walking training effects and balance effects. Seven people with 35 plug-in gait markers attached to the body surface were examined for this study. Normal walking and pole walking were measured using a three-dimensional motion analysis system (Vicon Motion Systems) and two force plates. Position and force data were acquired at velocities of 58, 77, and 96 bpm. Measured data were analyzed using musculoskeletal model analysis software (OpenSim) procedures: scaling, inverse kinematics, residual reduction algorithm, inverse dynamics, and computer muscle control. Results obtained using a musculoskeletal model indicate details of muscle force, lower limb joint moments, and lumbar moments during pole walking. Pole walking is effective for the training of muscles working against gravity in cases of lower walking speed (58 bpm). However, cases with higher (96 bpm) walking speed were associated with better conditions for lumbar muscle training.
更多
查看译文
关键词
muscle forces,gravity,speed effects,nordic-pole
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要