Enhanced copper (II) bioremediation from wastewater using nano magnetite (Fe3O4) modified biochar of Ascophyllum nodosum.

Bioresource technology(2023)

引用 0|浏览0
暂无评分
摘要
Despite the remarkable Cu(II) sorption biochar potential, it is challenging to desorb them for repeated biochar usage. The present study aims to develop engineered biochar by polarizing Ascophyllum nodosum (seaweed) biomass and magnetizing it with Fe3O4 nanoparticles coating. SEM, EDX, XRD, BET, and FT-IR helped to characterize engineered biochar. Unlike conventional, magnetite biochar exhibited a significant Cu(II) removal potential from an aqueous solution at pH 5. The native and magnetic biochar removal efficiency was 75.2 % (36.99 mgg-1) and 90.27% (45.13 mgg-1), respectively. No significant change in temperature effect was observed. Adsorption study showed that magnetic biochar followed the Langmuir isotherm model with Qmax 53.19 mgg-1. Adsorption kinetics study indicates that magnetic biochar chemisorption dominates over physisorption. Thus, this study shows that seaweed-derived modified biochar could be the best alternative bioresource for removing heavy metals from wastewater. It can be reused to reduce the overall treatment cost of the process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要