Dosimetry for radiobiological in-vivo experiments at laser plasma-based proton accelerators.

Physics in medicine and biology(2023)

引用 0|浏览13
暂无评分
摘要
Laser plasma-based proton accelerators (LPA) can contribute to research of ultra-high dose rate radiobiology as they provide pulse dose rates unprecedented at medical proton sources. Yet, LPAs pose challenges regarding precise dosimetry due to the high pulse dose rates, but also due to the sources' lower spectral stability and pulsed operation mode. For in-vivo models, further challenges arise from the necessary small field dosimetry for volumetric dose distributions. In this work, we present a dosimetry and beam monitoring concept for in-vivo irradiations of small target volumes with LPA protons, solving aforementioned challenges. The volumetric dose distribution in a sample (mean dose value and lateral/depth dose inhomogeneity) is provided by combining two independent dose measurements using radiochromic films (dose-rate independent) and ionization chambers (dose-rate dependent), respectively. The unique feature of the dosimetric setup is beam monitoring with a transmission time-of-flight spectrometer to quantify spectral fluctuations of the irradiating proton pulses. The resulting changes in the depth dose profile during irradiation of an in-vivo sample are hence accessible and enable pulse-resolved depth dose correction for each dose measurement. A first successful small animal pilot study using an LPA proton source serves as a testcase for the presented dosimetry approach and proves its performance in a realistic setting.
更多
查看译文
关键词
laser-driven proton sources, ultra-high dose rate dosimetry, in vivo radiobiology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要