Interaction of DGAT1 polymorphism, parity, and acetate supplementation on feeding behavior, milk synthesis, and plasma metabolites

JOURNAL OF DAIRY SCIENCE(2023)

引用 0|浏览0
暂无评分
摘要
Acetate supplementation increases milk fat production, but interactions with animal-related factors have not been investigated. The objective of this study was to characterize the interaction of acetate supplementation with parity and genetic potential for milk fat synthesis including the DGAT1 K232A polymorphism (AA and KA genotypes). In total, 47 primiparous and 49 multiparous lactating cows were used in 2 blocks in a crossover design. The basal diet was formulated to have a low risk of biohydrogenation-induced milk fat depression and had 32.8% and 32.0% neutral detergent fiber and 21.7% and 23.6% starch [all on a dry matter (DM) basis] in block 1 and 2, respectively. The control treatment received the basal diet, and the acetate supplementation treatment included anhydrous sodium acetate supplemented to the basal diet at 3.2% and 3.1% of DM of the diet for block 1 and 2, respectively (targeting 10 mol/d of acetate). The DGAT1 genotype frequency of the experimental cows was 45% AA and 51% KA, with 4% cows with either a KK or unimputable genotype. Acetate supplementation increased DM intake (DMI) in KA multiparous cows, but acetate did not change DMI in AA multiparous or primiparous cows of either genotype. Acetate supplementation increased the frequency of meals by 8% and decreased the length of each meal by similar to 5 min compared with control. There was no effect of acetate on milk yield. Acetate supplementation increased milk fat yield and concentration by 117 g/d and 0.31 percentage units, respectively, regardless of DGAT1 polymorphism or parity. The increase in milk fat yield was mostly due to an increase in yield of 16C mixed-sourced fatty acids, suggesting that acetate supplementation drives mammary de novo synthesis toward completion. Response to acetate supplementation was not related to genomic predicted transmitting ability of milk fat concentra-tion and yield or to pretrial milk fat percent and yield, suggesting that acetate increases milk fat production regardless of genetic potential for milk fat yield and level of milk fat synthesis. Interestingly, analyzing the temporal effect on the interaction between treatment and DGAT1 polymorphism on milk fat yield suggested that DGAT1 polymorphism may affect the short-term response to acetate supplementation during the first <= 7 d on treatment. Acetate supplementation also increased plasma beta-hydroxybutyrate concentration and decreased plasma glucose concentration. In conclusion, acetate supplementation consistently increased milk fat synthesis regardless of parity or genetic potential for milk fat
更多
查看译文
关键词
genetic potential,lipogenesis,milk fat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要