Flow Control by Oscillating Trailing-Edge Flaps

AIAA JOURNAL(2023)

引用 1|浏览2
暂无评分
摘要
No AccessTechnical NotesFlow Control by Oscillating Trailing-Edge FlapsBerkan Anılır, Dilek Funda Kurtuluş and Max F. PlatzerBerkan AnılırMiddle East Technical University, 06800 Ankara, Türkiye*Graduate Research Assistant, Aerospace Engineering Department; (Corresponding Author).Search for more papers by this author, Dilek Funda KurtuluşMiddle East Technical University, 06800 Ankara, Türkiye†Professor, Aerospace Engineering Department.Search for more papers by this author and Max F. PlatzerUniversity of California, Davis, Davis, California 95616‡Adjunct Professor of Mechanical and Aerospace Engineering, Department of Mechanical and Aerospace Engineering. Fellow AIAA.Search for more papers by this authorPublished Online:18 May 2023https://doi.org/10.2514/1.J062947SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Smith A. M. O. and Roberts H. E., “The Jet Airplane Utilizing Boundary Layer Air for Propulsion,” Journal of the Aeronautical Sciences, Vol. 14, No. 2, 1947, pp. 97–109. https://doi.org/10.2514/8.1273 LinkGoogle Scholar[2] Shyy W., Aono H., Kang C. and Liu H., An Introduction to Flapping Wing Aerodynamics, Cambridge Univ. Press, New York, 2013. https://doi.org/10.1017/CBO9781139583916 Google Scholar[3] Platzer M. F., “Integrated Propulsion/Lift/Control System for Aircraft and Ship Applications,” U.S. Patent Number 5,975,462, filed 2 Nov. 1999. Google Scholar[4] Jones K. D., Bradshaw C. J., Papadopoulos J. and Platzer M. F., “Bio-Inspired Design of Flapping-Wing Micro-Air-Vehicles,” Aeronautical Journal, Vol. 109, No. 1098, 2005, pp. 385–393. https://doi.org/10.1017/S0001924000000804 CrossrefGoogle Scholar[5] Dohring C. M., “Der Schub des Schlagenden Flügels und Seine Anwendung zur Grenzschichtbeeinflussung: Eine Experimentelle und Numerische Untersuchung,” Ph.D. Thesis, Bundeswehr Univ. Munich, Munich, Germany, 1998. Google Scholar[6] Dohring C. M., “Experimental Analysis of the Wake of an Oscillating Airfoil,” M.S. Thesis, Dept. of Aeronautics and Astronautics, U.S. Naval Postgraduate School, Monterey, CA, June 1996. Google Scholar[7] Jones K. D., Dohring C. M. and Platzer M. F., “Experimental and Computational Investigation of the Knoller-Betz Effect,” AIAA Journal, Vol. 36, No. 7, 1998, pp. 1240–1246. https://doi.org/10.2514/2.505 LinkGoogle Scholar[8] Heathcote S. and Gursul I., “Flexible Flapping Airfoil Propulsion at Low Reynolds Numbers,” AIAA Journal, Vol. 45, No. 5, 2007, pp. 1066–1079. https://doi.org/10.2514/1.25431 LinkGoogle Scholar[9] Young J. and Lai J. C. S., “Mechanisms Influencing the Efficiency of Oscillating Airfoil Propulsion,” AIAA Journal, Vol. 45, No. 7, 2007, pp. 1695–1702. https://doi.org/10.2514/1.27628 LinkGoogle Scholar[10] Wei Z. and Zheng Z. C., “Mechanisms of Wake Deflection Angle Change Behind a Heaving Airfoil,” Journal of Fluids and Structures, Vol. 48, July 2014, pp. 1–13. https://doi.org/10.1016/j.jfluidstructs.2014.02.010. CrossrefGoogle Scholar[11] Katzmayr R., “Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils,” NACA TM 147, April 1922. Google Scholar[12] Knoller R., “Die Gesetze des Luftwiderstandes,” Flug- und Motortechnik, Vol. 3, No. 21, 1909, pp. 1–7. Google Scholar[13] Betz A., “Ein Beitrag zur Erklärung des Segelfluges,” Zeitschrift für Flugtechnik and Motorluftschiffahrt, Vol. 3, 1912, pp. 269–272. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 61, Number 9September 2023Supplemental Materials CrossmarkInformationCopyright © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronauticsAerospace SciencesAircraft Operations and TechnologyAircraftsFluid DynamicsUnmanned Aerial VehicleUnsteady AerodynamicsVortex Dynamics KeywordsStrouhal NumberUnmanned Aerial VehicleUnsteady AerodynamicsPlunging AirfoilLow Reynolds NumberAcknowledgmentComputing resources provided by the National Center for High Performance Computing of Türkiye under grant number 5013242022 is greatly acknowledged.PDF Received26 February 2023Accepted23 April 2023Published online18 May 2023
更多
查看译文
关键词
flow,trailing-edge
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要