Systematically Improving the Efficiency of Grid-Based Coverage Path Planning Methodologies in Real-World UAVs' Operations

DRONES(2023)

引用 0|浏览8
暂无评分
摘要
This work focuses on the efficiency improvement of grid-based Coverage Path Planning (CPP) methodologies in real-world applications with UAVs. While several sophisticated approaches are met in literature, grid-based methods are not commonly used in real-life operations. This happens mostly due to the error that is introduced during the region's representation on the grid, a step mandatory for such methods, that can have a great negative impact on their overall coverage efficiency. A previous work on UAVs' coverage operations for remote sensing, has introduced a novel optimization procedure for finding the optimal relative placement between the region of interest and the grid, improving the coverage and resource utilization efficiency of the generated trajectories, but still, incorporating flaws that can affect certain aspects of the method's effectiveness. This work goes one step forward and introduces a CPP method, that provides three different ad-hoc coverage modes: the Geo-fenced Coverage Mode, the Better Coverage Mode and the Complete Coverage Mode, each incorporating features suitable for specific types of vehicles and real-world applications. For the design of the coverage trajectories, user-defined percentages of overlap (sidelap and frontlap) are taken into consideration, so that the collected data will be appropriate for applications like orthomosaicing and 3D mapping. The newly introduced modes are evaluated through simulations, using 20 publicly available benchmark regions as testbed, demonstrating their stenghts and weaknesses in terms of coverage and efficiency. The proposed method with its ad-hoc modes can handle even the most complex-shaped, concave regions with obstacles, ensuring complete coverage, no-sharp-turns, non-overlapping trajectories and strict geo-fencing. The achieved results demonstrate that the common issues encountered in grid-based methods can be overcome by considering the appropriate parameters, so that such methods can provide robust solutions in the CPP domain.
更多
查看译文
关键词
coverage path planning methodologies,grid-based,real-world
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要