A Combinatorial Proof for the Dowry Problem.

ITW(2023)

引用 0|浏览7
暂无评分
摘要
The Secretary problem is a classical sequential decision-making question that can be succinctly described as follows: a set of rank-ordered applicants are interviewed sequentially for a single position. Once an applicant is interviewed, an immediate and irrevocable decision is made if the person is to be offered the job or not and only applicants observed so far can be used in the decision process. The problem of interest is to identify the stopping rule that maximizes the probability of hiring the highest-ranked applicant. A multiple-choice version of the Secretary problem, known as the Dowry problem, assumes that one is given a fixed integer budget for the total number of selections allowed to choose the best applicant. It has been solved using tools from dynamic programming and optimal stopping theory. We provide the first combinatorial proof for a related new query-based model for which we are allowed to solicit the response of an expert to determine if an applicant is optimal. Since the selection criteria differ from those of the Dowry problem, we obtain nonidentical expected stopping times.
更多
查看译文
关键词
classical sequential decision-making,combinatorial proof,Dowry problem,dynamic programming,highest-ranked applicant hiring,immediate decision,irrevocable decision,nonidentical expected stopping times,optimal stopping theory,probability,query-based model,rank-ordered applicants,Secretary problem,stopping rule
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络