SIGIR 2023 Workshop on Retrieval Enhanced Machine Learning (REML @ SIGIR 2023).

SIGIR(2023)

引用 0|浏览25
暂无评分
摘要
Most machine learning models are designed to be self-contained and encode both "knowledge" and "reasoning" in their parameters. However, such models cannot perform effectively for tasks that require knowledge grounding and tasks that deal with non-stationary data, such as news and social media. Besides, these models often require huge number of parameters to encode all the required knowledge. These issues can be addressed via augmentation with a retrieval model. This category of machine learning models, which is called Retrieval-enhanced machine learning (REML), has recently attracted considerable attention in multiple research communities. For instance, REML models have been studied in the context of open-domain question answering, fact verification, and dialogue systems and also in the context of generalization through memorization in language models and memory networks. We believe that the information retrieval community can significantly contribute to this growing research area by designing, implementing, analyzing, and evaluating various aspects of retrieval models with applications to REML tasks. The goal of this full-day hybrid workshop is to bring together researchers from industry and academia to discuss various aspects of retrieval-enhanced machine learning, including effectiveness, efficiency, and robustness of these models in addition to their impact on real-world applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络