Liposomal formulation of model pentathiepin improves solubility and stability toward glutathione while preserving anticancer activity.

ARCHIV DER PHARMAZIE(2023)

引用 0|浏览2
暂无评分
摘要
The biological properties of pentathiepins have been attracting increased attention in recent years. Experiments have shown a wide range of effects of pentathiepins in vitro, such as induction of apoptosis and alteration of mitochondrial membrane potential in cancer cells, and inhibition of antioxidant enzymes, for example, glutathione peroxidase 1 (GPx1). Biological evaluation is sometimes limited due to low aqueous solubility, high lipophilicity, and poor stability toward thiols, for example, glutathione (GSH). To assess whether liposomes are suitable as drug carriers to overcome these drawbacks, a model pentathiepin was formulated in a liposomal preparation. The success of loading liposomes with pentathiepins was evaluated by using ultraviolet-visible light (UV-Vis) spectroscopy, dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC). Through inclusion into 100-nm-sized 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes, the aqueous solubility of a representative pentathiepin could be increased by several orders of magnitude to ca. 400 µM. The stability of the pentathiepin in the presence of GSH was increased fourfold as determined by UV-Vis spectroscopy. In antiproliferation experiments with two human cancer cell lines, no decrease in potency in the liposomal loaded pentathiepin compared to the free pentathiepin was found. In conclusion, liposomes are a suitable carrier for pentathiepins and improve both solubility and stability in the presence of thiols without compromising anticancer activity.
更多
查看译文
关键词
model pentathiepin,glutathione,liposomal formulation,anticancer activity,solubility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要