Evaluation the in vivo behaviors of PM2.5 in rats using noninvasive PET imaging with mimic particles

Chemosphere(2023)

引用 0|浏览8
暂无评分
摘要
Inhaled PM2.5 particles is harmful to human health. However, real-time tracking of PM2.5 particles and dynamic evaluation of the pharmacokinetic behaviors in vivo are still challenging. Here, PET imaging is utilized to noninvasively monitor the in vivo behavior of PM2.5 particles in rats. To mimic aerosol PM2.5 particles suspended in ambient air, 89Zr-labeled melanin nanoparticles (89Zr-MNP) are nebulized into microscopic liquid particles with a mean size of 2.5 μm. Then, the 89Zr-labeled PM2.5 mimic particles (89Zr-PM2.5) are administrated into rats via inhalation. PET imaging showed that 89Zr-PM2.5 mainly accumulated in the lungs for up to 384 h after administration. Besides, we also observe that a small amount of 89Zr-PM2.5 can penetrate the brain through the inhalation. Further PET imaging showed that enhanced uptakes of 18F-FDG and 18F-DPA-714 were found in the brain of rats upon PM2.5 mimic particle exposure, which revealed that pulmonary exposure to PM2.5 could cause potential damages to the brain. Note that abnormal glucose metabolism was reversed, but the neuroinflammation was permanent and could not be alleviated after ceasing PM2.5 exposure. Our results demonstrate that PET is a sensitive and feasible tool for evaluating the in vivo behaviors of PM2.5.
更多
查看译文
关键词
PM2.5,PET imaging,89Zr labeling,Melanin nanoparticles,In vivo tracking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要