A drug molecular classification model based on graph structure generation.

Journal of biomedical informatics(2023)

引用 0|浏览3
暂无评分
摘要
Molecular property prediction based on artificial intelligence technology has significant prospects in speeding up drug discovery and reducing drug discovery costs. Among them, molecular property prediction based on graph neural networks (GNNs) has received extensive attention in recent years. However, the existing graph neural networks still face the following challenges in node representation learning. First, the number of nodes increases exponentially with the expansion of the perception field, which limits the exploration ability of the model in the depth direction. Secondly, the large number of nodes in the perception field brings noise, which is not conducive to the model's representation learning of the key structures. Therefore, a graph neural network model based on structure generation is proposed in this paper. The model adopts the depth-first strategy to generate the key structures of the graph, to solve the problem of insufficient exploration ability of the graph neural network in the depth direction. A tendentious node selection method is designed to gradually select nodes and edges to generate the key structures of the graph, to solve the noise problem caused by the excessive number of nodes. In addition, the model skillfully realizes forward propagation and iterative optimization of structure generation by using an attention mechanism and random bias. Experimental results on public data sets show that the proposed model achieves better classification results than the existing best models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要