Multiscale hydrodynamics modeling reveals the temperature moderating role of the Northern Red Sea Islands.

Marine pollution bulletin(2023)

引用 0|浏览0
暂无评分
摘要
A growing interest in the hydrodynamics of the Red Sea has been observed since the beginning of the 21st century. However, the interaction between the Gulf of Suez (GOS) and the Red Sea along with possible natural mitigation mechanisms of heat stress on its southern coral reef zones have not been adequately investigated. This study evaluated different Regional Ocean Modeling System (ROMS) simulations of the Red Sea using a nesting approach in the southern parts of the GOS to elucidate the three-dimensional nature of thermal variability. The developed regional ROMS model simulated the general circulation patterns and sea surface temperature on the TSUBAME 3.0 supercomputer operated by the Tokyo Institute of Technology. Ultimately, remotely sensed satellite data of Sea Surface Temperature (SST) spanning the period 2016-2020 were used to validate the regional model results. A further challenge posed by the scarcity of distributed depth-varying temperature data on the northern islands' region was overcome by using an offline nesting approach (i.e., incorporating boundary conditions from the parent domain) to simulate the local 3-D thermal regimes. Intriguingly, the results of the nested model scenarios confirmed unique northern islands-enhanced thermal moderating mechanisms where islands act as barriers to the impacts of the relatively warmer water originating from the eastern boundary current. Additionally, this study introduces a new approach to applying higher-resolution models to the precise spatial and temporal representation of thermal indices in a way that surpasses the widely adopted remote sensing approaches. In short, multiscale modeling provides a valuable approach for assessing the thermal regimes around one of the most precious marine ecosystems in the world.
更多
查看译文
关键词
Red Sea,Northern Islands,ROMS,Hydrodynamic modeling,Coral bleaching,Nesting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要