Signatures of vacuum birefringence in low-power flying focus pulses

Physical Review D(2023)

引用 0|浏览14
暂无评分
摘要
Vacuum birefringence produces a differential phase between orthogonally polarized components of a weak electromagnetic probe in the presence of a strong electromagnetic field. Despite representing a hallmark prediction of quantum electrodynamics, vacuum birefringence remains untested in pure light configurations due to the extremely large electromagnetic fields required for a detectable phase difference. Here, we exploit the programmable focal velocity and extended focal range of a flying focus laser pulse to substantially lower the laser power required for detection of vacuum birefringence. In the proposed scheme, a linearly polarized x-ray probe pulse counter-propagates with respect to a flying focus pulse, whose focus moves at the speed of light in the same direction as the x-ray probe. The peak intensity of the flying focus pulse overlaps the probe over millimeter-scale distances and induces a polarization ellipticity on the order of $10^{-10}$, which lies within the detection sensitivity of existing x-ray polarimeters.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要