Identity, structure and compositional analysis of adjuvanted vaccines

crossref(2018)

引用 0|浏览0
暂无评分
摘要
1) Background: Traditionally, complex biological products such as vaccines presented unique challenges to implementation of even rudimentary characterization packages; thus, the product was defined almost exclusively by its manufacturing process. The advances in technology and analytical tools allowed the application of more comprehensive characterization packages for products such as adsorbed combination vaccines, which contain several antigens in a single formulation to protect against more than one disease, and may contain adjuvants and excipients. Aluminum phosphate (AlPO4) is a well-established adjuvant for enhancing the uptake of vaccines and to induce robust immunity against pathogens. During manufacturing, adjuvant is mixed with protein antigens which may in turn impact their higher order structure and stability. 2) Methods: To study the structural changes of protein antigens after adsorption several analytical tools including DLS, FTIR, Fluorescence, LD, and SEM were used. 3) Results: the AlPO4 adjuvant suspension consists of small submicron particles that form a continuous porous surface. Secondary structure alpha-helix and beta-sheet content of DT and TT increased after adsorption to AlPO4 adjuvant, whereas no significant changes were noted for other protein antigens. Interactions were noted between AlPO4 adjuvant and DT, TT, and FHA. 4) Conclusions: here we report for the first time the use of SEM for the visualization of adsorbed multivalent vaccine components. A unique signature profile detected for each multivalent vaccine by FTIR can be used as a lean in-process test to verify vaccine product composition and identity prior to filling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要