SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models

Xiaoxuan Wang,Ziniu Hu,Pan Lu,Yanqiao Zhu,Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba,Shichang Zhang,Yizhou Sun,Wei Wang

CoRR(2023)

引用 39|浏览684
暂无评分
摘要
Most of the existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations. To systematically examine the reasoning capabilities required for solving complex scientific problems, we introduce an expansive benchmark suite SciBench for LLMs. SciBench contains a carefully curated dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains. Based on the dataset, we conduct an in-depth benchmarking study of representative open-source and proprietary LLMs with various prompting strategies. The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22 user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms the others and some strategies that demonstrate improvements in certain problem-solving skills could result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
更多
查看译文
关键词
language,scientific,models,college-level,problem-solving
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要