ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease

Miguel Hueso, Josep M Cruzado,Joan Torras, Estanis Navarro

crossref(2018)

引用 0|浏览0
暂无评分
摘要
Atherosclerosis (ATH) and Coronary Artery Disease (CAD) are chronic inflammatory diseases with an important genetic background which derive from the cumulative effect of multiple common risk alleles, most of them located in genomic non-coding regions. These complex diseases behave as non-linear dynamical systems that show a high dependence on their initial conditions, so that long-term predictions of disease progression are unreliable. One likely possibility is that the non-linear nature of ATH could be dependent on non-linear correlations in the structure of the human genome. In this review we show how Chaos theory analysis highlighted genomic regions that shared specific structural constraints that could have a role in ATH progression. These regions were shown to be enriched in repetitive sequences of the Alu family, genomic parasites which colonized the human genome, which show a particular secondary structure and have been involved in the regulation of gene expression. We also review the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms by which the Alu elements could alter the inflammatory homeostasis. We devise especial attention to their relationship with the lncRNA ANRIL, the strongest risk factor for ATH, their role as miRNA sponges, and their ability to interfere with the regulatory circuitry of the NF-kB response. We aim to characterize ATH as a non-linear dynamic system in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要