Electrophysiological signatures of spatial boundaries in the human subiculum

crossref(2017)

引用 0|浏览0
暂无评分
摘要
AbstractEnvironmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly-related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. While studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. Here we present direct intracranial recordings from the hippocampal formation of surgical epilepsy patients while they performed a virtual spatial navigation task. Our results suggest that encoding target locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, or movement. These findings provide the first direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homologue of the hippocampal subregion in which most rodent boundary cells are found.Significance StatementSpatial computations using environmental boundaries are an integral part of the brain’s spatial mapping system. In rodents, border/boundary cells in the subiculum and entorhinal cortex reveal boundary coding at the single-neuron level. Although there is good reason to believe that such representations also exist in humans, the evidence has thus far been limited to fMRI studies that broadly implicate the hippocampus in boundary-based navigation. By combining intracranial recordings with high-resolution imaging of hippocampal subregions we identified, for the first time in humans, a neural marker of boundary representation in the subiculum.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要