Association of fecal short-chain fatty acids with clinical severity and gut microbiota in essential tremor and its difference from Parkinson’s disease

NPJ Parkinson's disease(2023)

引用 0|浏览5
暂无评分
摘要
Diagnosis of essential tremor (ET) at an early stage can be difficult, especially when distinguishing it from healthy controls (HCs) and Parkinson’s disease (PD). Recently, stool sample analysis of gut microbiota and its metabolites provides new ways to detect novel biomarkers for neurodegenerative diseases. Short-chain fatty acids (SCFAs), as the main metabolites of gut microbiota, were reduced in the feces of PD. However, fecal SCFAs in ET have never been investigated. We aimed to investigate the fecal SCFA levels in ET, assess their relationships with clinical symptoms and gut microbiota, and identify their potential diagnostic abilities. Fecal SCFAs and gut microbiota in 37 ET, 37 de novo PD and 35 HC were measured. Constipation, autonomic dysfunction and tremor severity were evaluated by scales. ET had lower fecal propionic, butyric and isobutyric acid levels than HC. Combined propionic, butyric and isobutyric acid distinguished ET from HC with an AUC of 0.751 (95% CI: 0.634–0.867). ET had lower fecal isovaleric and isobutyric acid levels than PD. Isovaleric and isobutyric acid differentiated ET from PD with an AUC of 0.743 (95% CI: 0.629–0.857). Fecal propionic acid was negatively correlated with constipation and autonomic dysfunction. Isobutyric and isovaleric acid were negatively associated with tremor severity. Lowered fecal SCFAs were related to a decreased abundance of Faecalibacterium and Catenibacterium in ET. In conclusion, fecal SCFAs were decreased in ET and correlated with clinical severity and gut microbiota changes. Fecal propionic, butyric, isobutyric and isovaleric acid might be potential diagnostic and differential diagnostic biomarkers for ET.
更多
查看译文
关键词
essential tremor,gut microbiota,fatty acids,parkinsons,short-chain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要