Synthesis and characterization of the N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) alternate substrate analog N,N-dimethyl-l,l-SDAP.

Bioorganic & medicinal chemistry(2023)

引用 0|浏览5
暂无评分
摘要
Growing antibiotic resistance by pathogenic bacteria has led to a global crisis. The bacterial enzyme N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) provides a very attractive target for the discovery of a new class of antibiotics, as it resides exclusively in many pathogenic bacterial strains and is a key enzyme in the lysine biosynthetic pathway. This pathway is responsible for the production of lysine as well as meso-diaminopimelate (m-DAP), both of which are required for peptidoglycan cell-wall synthesis, and lysine for peptide synthesis. The enzyme DapE catalyzes the hydrolysis of N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) to succinate and l,l-diaminopimelic acid (l,l-DAP), and due to its absence in humans, inhibition of DapE avoids mechanism-based side effects. We have executed the asymmetric synthesis of N,N-dimethyl-SDAP, an l,l-SDAP substrate analog and an analog of the synthetic substrate of our previously described DapE assay. Previous modeling studies advocated that N,N-dimethyl-SDAP might function as an inhibitor, however the compound behaves as a substrate, and we have demonstrated the use of N,N-dimethyl-SDAP as the substrate in a modified ninhydrin-based DapE assay. Thermal shift experiments of DapE in the presence of N,N-dimethyl-SDAP are consistent with a melt temperature (T) shifted by succinate, the product of enzymatic hydrolysis.
更多
查看译文
关键词
synthesis,n-succinyl-l,l-diaminopimelic,n-dimethyl-l,l-sdap
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要